\(\int \frac {\arctan (a x)^2}{x^3 \sqrt {c+a^2 c x^2}} \, dx\) [337]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 24, antiderivative size = 328 \[ \int \frac {\arctan (a x)^2}{x^3 \sqrt {c+a^2 c x^2}} \, dx=-\frac {a \sqrt {c+a^2 c x^2} \arctan (a x)}{c x}-\frac {\sqrt {c+a^2 c x^2} \arctan (a x)^2}{2 c x^2}+\frac {a^2 \sqrt {1+a^2 x^2} \arctan (a x)^2 \text {arctanh}\left (e^{i \arctan (a x)}\right )}{\sqrt {c+a^2 c x^2}}-\frac {a^2 \text {arctanh}\left (\frac {\sqrt {c+a^2 c x^2}}{\sqrt {c}}\right )}{\sqrt {c}}-\frac {i a^2 \sqrt {1+a^2 x^2} \arctan (a x) \operatorname {PolyLog}\left (2,-e^{i \arctan (a x)}\right )}{\sqrt {c+a^2 c x^2}}+\frac {i a^2 \sqrt {1+a^2 x^2} \arctan (a x) \operatorname {PolyLog}\left (2,e^{i \arctan (a x)}\right )}{\sqrt {c+a^2 c x^2}}+\frac {a^2 \sqrt {1+a^2 x^2} \operatorname {PolyLog}\left (3,-e^{i \arctan (a x)}\right )}{\sqrt {c+a^2 c x^2}}-\frac {a^2 \sqrt {1+a^2 x^2} \operatorname {PolyLog}\left (3,e^{i \arctan (a x)}\right )}{\sqrt {c+a^2 c x^2}} \]

[Out]

-a^2*arctanh((a^2*c*x^2+c)^(1/2)/c^(1/2))/c^(1/2)+a^2*arctan(a*x)^2*arctanh((1+I*a*x)/(a^2*x^2+1)^(1/2))*(a^2*
x^2+1)^(1/2)/(a^2*c*x^2+c)^(1/2)-I*a^2*arctan(a*x)*polylog(2,-(1+I*a*x)/(a^2*x^2+1)^(1/2))*(a^2*x^2+1)^(1/2)/(
a^2*c*x^2+c)^(1/2)+I*a^2*arctan(a*x)*polylog(2,(1+I*a*x)/(a^2*x^2+1)^(1/2))*(a^2*x^2+1)^(1/2)/(a^2*c*x^2+c)^(1
/2)+a^2*polylog(3,-(1+I*a*x)/(a^2*x^2+1)^(1/2))*(a^2*x^2+1)^(1/2)/(a^2*c*x^2+c)^(1/2)-a^2*polylog(3,(1+I*a*x)/
(a^2*x^2+1)^(1/2))*(a^2*x^2+1)^(1/2)/(a^2*c*x^2+c)^(1/2)-a*arctan(a*x)*(a^2*c*x^2+c)^(1/2)/c/x-1/2*arctan(a*x)
^2*(a^2*c*x^2+c)^(1/2)/c/x^2

Rubi [A] (verified)

Time = 0.34 (sec) , antiderivative size = 328, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.458, Rules used = {5082, 5064, 272, 65, 214, 5078, 5076, 4268, 2611, 2320, 6724} \[ \int \frac {\arctan (a x)^2}{x^3 \sqrt {c+a^2 c x^2}} \, dx=\frac {a^2 \sqrt {a^2 x^2+1} \arctan (a x)^2 \text {arctanh}\left (e^{i \arctan (a x)}\right )}{\sqrt {a^2 c x^2+c}}-\frac {i a^2 \sqrt {a^2 x^2+1} \arctan (a x) \operatorname {PolyLog}\left (2,-e^{i \arctan (a x)}\right )}{\sqrt {a^2 c x^2+c}}+\frac {i a^2 \sqrt {a^2 x^2+1} \arctan (a x) \operatorname {PolyLog}\left (2,e^{i \arctan (a x)}\right )}{\sqrt {a^2 c x^2+c}}+\frac {a^2 \sqrt {a^2 x^2+1} \operatorname {PolyLog}\left (3,-e^{i \arctan (a x)}\right )}{\sqrt {a^2 c x^2+c}}-\frac {a^2 \sqrt {a^2 x^2+1} \operatorname {PolyLog}\left (3,e^{i \arctan (a x)}\right )}{\sqrt {a^2 c x^2+c}}-\frac {a \arctan (a x) \sqrt {a^2 c x^2+c}}{c x}-\frac {\arctan (a x)^2 \sqrt {a^2 c x^2+c}}{2 c x^2}-\frac {a^2 \text {arctanh}\left (\frac {\sqrt {a^2 c x^2+c}}{\sqrt {c}}\right )}{\sqrt {c}} \]

[In]

Int[ArcTan[a*x]^2/(x^3*Sqrt[c + a^2*c*x^2]),x]

[Out]

-((a*Sqrt[c + a^2*c*x^2]*ArcTan[a*x])/(c*x)) - (Sqrt[c + a^2*c*x^2]*ArcTan[a*x]^2)/(2*c*x^2) + (a^2*Sqrt[1 + a
^2*x^2]*ArcTan[a*x]^2*ArcTanh[E^(I*ArcTan[a*x])])/Sqrt[c + a^2*c*x^2] - (a^2*ArcTanh[Sqrt[c + a^2*c*x^2]/Sqrt[
c]])/Sqrt[c] - (I*a^2*Sqrt[1 + a^2*x^2]*ArcTan[a*x]*PolyLog[2, -E^(I*ArcTan[a*x])])/Sqrt[c + a^2*c*x^2] + (I*a
^2*Sqrt[1 + a^2*x^2]*ArcTan[a*x]*PolyLog[2, E^(I*ArcTan[a*x])])/Sqrt[c + a^2*c*x^2] + (a^2*Sqrt[1 + a^2*x^2]*P
olyLog[3, -E^(I*ArcTan[a*x])])/Sqrt[c + a^2*c*x^2] - (a^2*Sqrt[1 + a^2*x^2]*PolyLog[3, E^(I*ArcTan[a*x])])/Sqr
t[c + a^2*c*x^2]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 2320

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 2611

Int[Log[1 + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.)*(x_))^(m_.), x_Symbol] :> Simp[(-(
f + g*x)^m)*(PolyLog[2, (-e)*(F^(c*(a + b*x)))^n]/(b*c*n*Log[F])), x] + Dist[g*(m/(b*c*n*Log[F])), Int[(f + g*
x)^(m - 1)*PolyLog[2, (-e)*(F^(c*(a + b*x)))^n], x], x] /; FreeQ[{F, a, b, c, e, f, g, n}, x] && GtQ[m, 0]

Rule 4268

Int[csc[(e_.) + (f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[-2*(c + d*x)^m*(ArcTanh[E^(I*(e + f*
x))]/f), x] + (-Dist[d*(m/f), Int[(c + d*x)^(m - 1)*Log[1 - E^(I*(e + f*x))], x], x] + Dist[d*(m/f), Int[(c +
d*x)^(m - 1)*Log[1 + E^(I*(e + f*x))], x], x]) /; FreeQ[{c, d, e, f}, x] && IGtQ[m, 0]

Rule 5064

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp
[(f*x)^(m + 1)*(d + e*x^2)^(q + 1)*((a + b*ArcTan[c*x])^p/(d*f*(m + 1))), x] - Dist[b*c*(p/(f*(m + 1))), Int[(
f*x)^(m + 1)*(d + e*x^2)^q*(a + b*ArcTan[c*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && EqQ[e,
 c^2*d] && EqQ[m + 2*q + 3, 0] && GtQ[p, 0] && NeQ[m, -1]

Rule 5076

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_)/((x_)*Sqrt[(d_) + (e_.)*(x_)^2]), x_Symbol] :> Dist[1/Sqrt[d], Sub
st[Int[(a + b*x)^p*Csc[x], x], x, ArcTan[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[p, 0]
 && GtQ[d, 0]

Rule 5078

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)/((x_)*Sqrt[(d_) + (e_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 + c^2*
x^2]/Sqrt[d + e*x^2], Int[(a + b*ArcTan[c*x])^p/(x*Sqrt[1 + c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, e}, x] &&
EqQ[e, c^2*d] && IGtQ[p, 0] &&  !GtQ[d, 0]

Rule 5082

Int[(((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[
(f*x)^(m + 1)*Sqrt[d + e*x^2]*((a + b*ArcTan[c*x])^p/(d*f*(m + 1))), x] + (-Dist[b*c*(p/(f*(m + 1))), Int[(f*x
)^(m + 1)*((a + b*ArcTan[c*x])^(p - 1)/Sqrt[d + e*x^2]), x], x] - Dist[c^2*((m + 2)/(f^2*(m + 1))), Int[(f*x)^
(m + 2)*((a + b*ArcTan[c*x])^p/Sqrt[d + e*x^2]), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[e, c^2*d] && G
tQ[p, 0] && LtQ[m, -1] && NeQ[m, -2]

Rule 6724

Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[PolyLog[n + 1, c*(a
+ b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d, a*e]

Rubi steps \begin{align*} \text {integral}& = -\frac {\sqrt {c+a^2 c x^2} \arctan (a x)^2}{2 c x^2}+a \int \frac {\arctan (a x)}{x^2 \sqrt {c+a^2 c x^2}} \, dx-\frac {1}{2} a^2 \int \frac {\arctan (a x)^2}{x \sqrt {c+a^2 c x^2}} \, dx \\ & = -\frac {a \sqrt {c+a^2 c x^2} \arctan (a x)}{c x}-\frac {\sqrt {c+a^2 c x^2} \arctan (a x)^2}{2 c x^2}+a^2 \int \frac {1}{x \sqrt {c+a^2 c x^2}} \, dx-\frac {\left (a^2 \sqrt {1+a^2 x^2}\right ) \int \frac {\arctan (a x)^2}{x \sqrt {1+a^2 x^2}} \, dx}{2 \sqrt {c+a^2 c x^2}} \\ & = -\frac {a \sqrt {c+a^2 c x^2} \arctan (a x)}{c x}-\frac {\sqrt {c+a^2 c x^2} \arctan (a x)^2}{2 c x^2}+\frac {1}{2} a^2 \text {Subst}\left (\int \frac {1}{x \sqrt {c+a^2 c x}} \, dx,x,x^2\right )-\frac {\left (a^2 \sqrt {1+a^2 x^2}\right ) \text {Subst}\left (\int x^2 \csc (x) \, dx,x,\arctan (a x)\right )}{2 \sqrt {c+a^2 c x^2}} \\ & = -\frac {a \sqrt {c+a^2 c x^2} \arctan (a x)}{c x}-\frac {\sqrt {c+a^2 c x^2} \arctan (a x)^2}{2 c x^2}+\frac {a^2 \sqrt {1+a^2 x^2} \arctan (a x)^2 \text {arctanh}\left (e^{i \arctan (a x)}\right )}{\sqrt {c+a^2 c x^2}}+\frac {\text {Subst}\left (\int \frac {1}{-\frac {1}{a^2}+\frac {x^2}{a^2 c}} \, dx,x,\sqrt {c+a^2 c x^2}\right )}{c}+\frac {\left (a^2 \sqrt {1+a^2 x^2}\right ) \text {Subst}\left (\int x \log \left (1-e^{i x}\right ) \, dx,x,\arctan (a x)\right )}{\sqrt {c+a^2 c x^2}}-\frac {\left (a^2 \sqrt {1+a^2 x^2}\right ) \text {Subst}\left (\int x \log \left (1+e^{i x}\right ) \, dx,x,\arctan (a x)\right )}{\sqrt {c+a^2 c x^2}} \\ & = -\frac {a \sqrt {c+a^2 c x^2} \arctan (a x)}{c x}-\frac {\sqrt {c+a^2 c x^2} \arctan (a x)^2}{2 c x^2}+\frac {a^2 \sqrt {1+a^2 x^2} \arctan (a x)^2 \text {arctanh}\left (e^{i \arctan (a x)}\right )}{\sqrt {c+a^2 c x^2}}-\frac {a^2 \text {arctanh}\left (\frac {\sqrt {c+a^2 c x^2}}{\sqrt {c}}\right )}{\sqrt {c}}-\frac {i a^2 \sqrt {1+a^2 x^2} \arctan (a x) \operatorname {PolyLog}\left (2,-e^{i \arctan (a x)}\right )}{\sqrt {c+a^2 c x^2}}+\frac {i a^2 \sqrt {1+a^2 x^2} \arctan (a x) \operatorname {PolyLog}\left (2,e^{i \arctan (a x)}\right )}{\sqrt {c+a^2 c x^2}}+\frac {\left (i a^2 \sqrt {1+a^2 x^2}\right ) \text {Subst}\left (\int \operatorname {PolyLog}\left (2,-e^{i x}\right ) \, dx,x,\arctan (a x)\right )}{\sqrt {c+a^2 c x^2}}-\frac {\left (i a^2 \sqrt {1+a^2 x^2}\right ) \text {Subst}\left (\int \operatorname {PolyLog}\left (2,e^{i x}\right ) \, dx,x,\arctan (a x)\right )}{\sqrt {c+a^2 c x^2}} \\ & = -\frac {a \sqrt {c+a^2 c x^2} \arctan (a x)}{c x}-\frac {\sqrt {c+a^2 c x^2} \arctan (a x)^2}{2 c x^2}+\frac {a^2 \sqrt {1+a^2 x^2} \arctan (a x)^2 \text {arctanh}\left (e^{i \arctan (a x)}\right )}{\sqrt {c+a^2 c x^2}}-\frac {a^2 \text {arctanh}\left (\frac {\sqrt {c+a^2 c x^2}}{\sqrt {c}}\right )}{\sqrt {c}}-\frac {i a^2 \sqrt {1+a^2 x^2} \arctan (a x) \operatorname {PolyLog}\left (2,-e^{i \arctan (a x)}\right )}{\sqrt {c+a^2 c x^2}}+\frac {i a^2 \sqrt {1+a^2 x^2} \arctan (a x) \operatorname {PolyLog}\left (2,e^{i \arctan (a x)}\right )}{\sqrt {c+a^2 c x^2}}+\frac {\left (a^2 \sqrt {1+a^2 x^2}\right ) \text {Subst}\left (\int \frac {\operatorname {PolyLog}(2,-x)}{x} \, dx,x,e^{i \arctan (a x)}\right )}{\sqrt {c+a^2 c x^2}}-\frac {\left (a^2 \sqrt {1+a^2 x^2}\right ) \text {Subst}\left (\int \frac {\operatorname {PolyLog}(2,x)}{x} \, dx,x,e^{i \arctan (a x)}\right )}{\sqrt {c+a^2 c x^2}} \\ & = -\frac {a \sqrt {c+a^2 c x^2} \arctan (a x)}{c x}-\frac {\sqrt {c+a^2 c x^2} \arctan (a x)^2}{2 c x^2}+\frac {a^2 \sqrt {1+a^2 x^2} \arctan (a x)^2 \text {arctanh}\left (e^{i \arctan (a x)}\right )}{\sqrt {c+a^2 c x^2}}-\frac {a^2 \text {arctanh}\left (\frac {\sqrt {c+a^2 c x^2}}{\sqrt {c}}\right )}{\sqrt {c}}-\frac {i a^2 \sqrt {1+a^2 x^2} \arctan (a x) \operatorname {PolyLog}\left (2,-e^{i \arctan (a x)}\right )}{\sqrt {c+a^2 c x^2}}+\frac {i a^2 \sqrt {1+a^2 x^2} \arctan (a x) \operatorname {PolyLog}\left (2,e^{i \arctan (a x)}\right )}{\sqrt {c+a^2 c x^2}}+\frac {a^2 \sqrt {1+a^2 x^2} \operatorname {PolyLog}\left (3,-e^{i \arctan (a x)}\right )}{\sqrt {c+a^2 c x^2}}-\frac {a^2 \sqrt {1+a^2 x^2} \operatorname {PolyLog}\left (3,e^{i \arctan (a x)}\right )}{\sqrt {c+a^2 c x^2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.06 (sec) , antiderivative size = 231, normalized size of antiderivative = 0.70 \[ \int \frac {\arctan (a x)^2}{x^3 \sqrt {c+a^2 c x^2}} \, dx=\frac {a^2 \sqrt {1+a^2 x^2} \left (-4 \arctan (a x) \cot \left (\frac {1}{2} \arctan (a x)\right )-\arctan (a x)^2 \csc ^2\left (\frac {1}{2} \arctan (a x)\right )-4 \arctan (a x)^2 \log \left (1-e^{i \arctan (a x)}\right )+4 \arctan (a x)^2 \log \left (1+e^{i \arctan (a x)}\right )+8 \log \left (\tan \left (\frac {1}{2} \arctan (a x)\right )\right )-8 i \arctan (a x) \operatorname {PolyLog}\left (2,-e^{i \arctan (a x)}\right )+8 i \arctan (a x) \operatorname {PolyLog}\left (2,e^{i \arctan (a x)}\right )+8 \operatorname {PolyLog}\left (3,-e^{i \arctan (a x)}\right )-8 \operatorname {PolyLog}\left (3,e^{i \arctan (a x)}\right )+\arctan (a x)^2 \sec ^2\left (\frac {1}{2} \arctan (a x)\right )-4 \arctan (a x) \tan \left (\frac {1}{2} \arctan (a x)\right )\right )}{8 \sqrt {c \left (1+a^2 x^2\right )}} \]

[In]

Integrate[ArcTan[a*x]^2/(x^3*Sqrt[c + a^2*c*x^2]),x]

[Out]

(a^2*Sqrt[1 + a^2*x^2]*(-4*ArcTan[a*x]*Cot[ArcTan[a*x]/2] - ArcTan[a*x]^2*Csc[ArcTan[a*x]/2]^2 - 4*ArcTan[a*x]
^2*Log[1 - E^(I*ArcTan[a*x])] + 4*ArcTan[a*x]^2*Log[1 + E^(I*ArcTan[a*x])] + 8*Log[Tan[ArcTan[a*x]/2]] - (8*I)
*ArcTan[a*x]*PolyLog[2, -E^(I*ArcTan[a*x])] + (8*I)*ArcTan[a*x]*PolyLog[2, E^(I*ArcTan[a*x])] + 8*PolyLog[3, -
E^(I*ArcTan[a*x])] - 8*PolyLog[3, E^(I*ArcTan[a*x])] + ArcTan[a*x]^2*Sec[ArcTan[a*x]/2]^2 - 4*ArcTan[a*x]*Tan[
ArcTan[a*x]/2]))/(8*Sqrt[c*(1 + a^2*x^2)])

Maple [A] (verified)

Time = 1.48 (sec) , antiderivative size = 261, normalized size of antiderivative = 0.80

method result size
default \(-\frac {\left (2 a x +\arctan \left (a x \right )\right ) \arctan \left (a x \right ) \sqrt {c \left (a x -i\right ) \left (a x +i\right )}}{2 c \,x^{2}}+\frac {a^{2} \left (\arctan \left (a x \right )^{2} \ln \left (\frac {i a x +1}{\sqrt {a^{2} x^{2}+1}}+1\right )-\arctan \left (a x \right )^{2} \ln \left (1-\frac {i a x +1}{\sqrt {a^{2} x^{2}+1}}\right )-2 i \arctan \left (a x \right ) \operatorname {polylog}\left (2, -\frac {i a x +1}{\sqrt {a^{2} x^{2}+1}}\right )+2 i \arctan \left (a x \right ) \operatorname {polylog}\left (2, \frac {i a x +1}{\sqrt {a^{2} x^{2}+1}}\right )+2 \operatorname {polylog}\left (3, -\frac {i a x +1}{\sqrt {a^{2} x^{2}+1}}\right )-2 \operatorname {polylog}\left (3, \frac {i a x +1}{\sqrt {a^{2} x^{2}+1}}\right )-4 \,\operatorname {arctanh}\left (\frac {i a x +1}{\sqrt {a^{2} x^{2}+1}}\right )\right ) \sqrt {c \left (a x -i\right ) \left (a x +i\right )}}{2 \sqrt {a^{2} x^{2}+1}\, c}\) \(261\)

[In]

int(arctan(a*x)^2/x^3/(a^2*c*x^2+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/2*(2*a*x+arctan(a*x))*arctan(a*x)*(c*(a*x-I)*(I+a*x))^(1/2)/c/x^2+1/2*a^2*(arctan(a*x)^2*ln((1+I*a*x)/(a^2*
x^2+1)^(1/2)+1)-arctan(a*x)^2*ln(1-(1+I*a*x)/(a^2*x^2+1)^(1/2))-2*I*arctan(a*x)*polylog(2,-(1+I*a*x)/(a^2*x^2+
1)^(1/2))+2*I*arctan(a*x)*polylog(2,(1+I*a*x)/(a^2*x^2+1)^(1/2))+2*polylog(3,-(1+I*a*x)/(a^2*x^2+1)^(1/2))-2*p
olylog(3,(1+I*a*x)/(a^2*x^2+1)^(1/2))-4*arctanh((1+I*a*x)/(a^2*x^2+1)^(1/2)))*(c*(a*x-I)*(I+a*x))^(1/2)/(a^2*x
^2+1)^(1/2)/c

Fricas [F]

\[ \int \frac {\arctan (a x)^2}{x^3 \sqrt {c+a^2 c x^2}} \, dx=\int { \frac {\arctan \left (a x\right )^{2}}{\sqrt {a^{2} c x^{2} + c} x^{3}} \,d x } \]

[In]

integrate(arctan(a*x)^2/x^3/(a^2*c*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(a^2*c*x^2 + c)*arctan(a*x)^2/(a^2*c*x^5 + c*x^3), x)

Sympy [F]

\[ \int \frac {\arctan (a x)^2}{x^3 \sqrt {c+a^2 c x^2}} \, dx=\int \frac {\operatorname {atan}^{2}{\left (a x \right )}}{x^{3} \sqrt {c \left (a^{2} x^{2} + 1\right )}}\, dx \]

[In]

integrate(atan(a*x)**2/x**3/(a**2*c*x**2+c)**(1/2),x)

[Out]

Integral(atan(a*x)**2/(x**3*sqrt(c*(a**2*x**2 + 1))), x)

Maxima [F]

\[ \int \frac {\arctan (a x)^2}{x^3 \sqrt {c+a^2 c x^2}} \, dx=\int { \frac {\arctan \left (a x\right )^{2}}{\sqrt {a^{2} c x^{2} + c} x^{3}} \,d x } \]

[In]

integrate(arctan(a*x)^2/x^3/(a^2*c*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(arctan(a*x)^2/(sqrt(a^2*c*x^2 + c)*x^3), x)

Giac [F]

\[ \int \frac {\arctan (a x)^2}{x^3 \sqrt {c+a^2 c x^2}} \, dx=\int { \frac {\arctan \left (a x\right )^{2}}{\sqrt {a^{2} c x^{2} + c} x^{3}} \,d x } \]

[In]

integrate(arctan(a*x)^2/x^3/(a^2*c*x^2+c)^(1/2),x, algorithm="giac")

[Out]

sage0*x

Mupad [F(-1)]

Timed out. \[ \int \frac {\arctan (a x)^2}{x^3 \sqrt {c+a^2 c x^2}} \, dx=\int \frac {{\mathrm {atan}\left (a\,x\right )}^2}{x^3\,\sqrt {c\,a^2\,x^2+c}} \,d x \]

[In]

int(atan(a*x)^2/(x^3*(c + a^2*c*x^2)^(1/2)),x)

[Out]

int(atan(a*x)^2/(x^3*(c + a^2*c*x^2)^(1/2)), x)